

"In deep learning, **there's no data like more data**. The more examples of a given phenomenon a network is exposed to, the more accurately it can pick out patterns and identify things in the real world."

-KAI-FU LEE, AUTHOR OF AI SUPERPOWERS

INTRODUCTION

Federated Learning is a novel machine learning framework focused on privacy preservation, that trains deep neural networks through decentralized data. However, due to its blind aggregation methods, Federated Learning is prone to noise and data/model poisoning attacks. Through our research, we find that despite this truth, due to Federated Learning's robust framework, even small neural networks can train at high accuracy on the

main task.

CORE PARABLE

CONCERNS WITH FEDERATED LEARNING

Due to Federated Learning complex system, it is prone to many accuracy deteriorates/attack surfaces:

- Label/Image noise from annotation errors
- Model/Data poisoning attacks
- Malicious backdoor attacks

This causes many doubts in developers' minds to implement this framework

REASONS TO DISMISS THESE CONCERNS

- We found that even with a relatively small model, the accuracy was fairly high for the main tasks when trained with a noisy dataset
- This is possible due to the shear robustness of the Federated Learning architecture
- Important to note: We did not train for backdoor attacks (see Future Works)

NEURAL NETWORKS

SCIENCE INTERNSHIP PROGRAM

TYPES OF NOISE

FEATURE NOISE

- Blur
- Replaces pixels with the average of their neighbors
- Masking
- Removes part of the image

LABEL NOISE

- Swapping labels
- Can be full or partial

MODEL Architecture

FEATURE NOISE

label: 6

mask_bot_third

- Mask noise _
- Blur noise _
- These examples are **harder**, but not wrong -

gaussian_1_5

LABEL NOISE

- Swapping two numbers _
- Setting all label to zero -
- These examples are actively wrong _

1

label: 7 label: 7 label: 2

label: 9

CONCLUSIONS

ANALYSIS & LESSON LEARNED

- Overall, the model Federated context was able to handle all iterations of malicious client ratios due to its robust aggregation protocol
- Sweeps with lower accuracy were due to noise making it impractical for the model to train because majority of the dataset taught the model wrong data
- Federated Learning is effective in most noisy and clean scenarios

FUTURE WORK

- Utilize Exponential Gradient
 Reweighting to do Robust
 Federated Aggregation on noisy
 datasets
- Utilize Differential Privacy to do anomaly detection against malicious backdoors

SELECTED REFERENCES

WARMUTH, MANFRED K., ET AL.	2021	Exponentiated Gradient Reweighting for Robust Training Under Label Noise and Beyond. arXiv
BAGDASARYAN, EUGENE, ET AL.	2019	How To Backdoor Federated Learning. arXiv
CHEN, XINYUN, ET AL.	2017	Targeted Backdoor Attacks on Deep Learning Systems Using Data Poisoning. arXiv
BHAGOJI, ARJUN, ET AL.	2019	Analyzing Federated Learning through an Adversarial Lens. International Conference on Machine Learning
CHEN, CHIEN-LUN, ET AL.	2020	Backdoor Attacks on Federated Meta-Learning. arXiv

THANKS

Does anyone have any questions?

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik** and illustrations by **Storyset**

