XIP-1 Presentation: Transformers on Drones

State of the Art ML on Lightweight Devices

Agenda

Problem

the deep learning gap

Process

realizing the dream

Solution

optimizing implementations

Impacts

the future is now

Problem

the deep learning gap

Modern machine learning relies on enormous data and compute.

by conservative estimates, GPT-3 used

153599846

books worth of data

40 lifetimes

worth of thinking by energy expended

ML is Impactful on Edge Devices

1		Ō	
	2.2		l

Personal Electronics

powerful but private personal assistants

Robotic Devices

from disaster response to autonomous vehicles Internet of Things

smart homes and smart cities

Solution

optimizing implementations

Constraints

Hard Memory Limit

IoT devices have up to tens of MB of memory and up to a few GB of swap, severely limiting the maximum model complexity.

Soft Inference Time

The faster the better for real-time IoT tasks, meaning the tens of seconds needed for SoTA inference is unacceptable.

Optimization Methodologies

Model Distillation

Teach a smaller model using a larger one

Weight Quantization

Approximate weights with less granularity

Architecture Search

Optimize model shape for hardware

Hardware Acceleration

Design custom hardware around existing models

Development Trade Off

flexible

◇ PyTorch
◆ TensorFlow
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···
···</lit>
···
···
···</

historically, edge-level hardware solutions are

500x faster

Project Methodology

Stage 2

Implement GPT-2 in vanilla Python

Stage 4

Generate hardware description using HLS

Stage 1

Learn about hardware efficient transformers

Stage 3

Rewrite impl in C-style High Level Synthesis

Stage 5

Deploy code to FPGAs on Drones

Process

realizing the dream

Project Methodology

Stage 2

Implement GPT-2 using low-level NumPy

Stage 4

Generate hardware description using HLS

Stage 1

Learn about hardware efficient transformers

Stage 3

Rewrite impl in C-style High Level Synthesis Stage 5

Deploy code to FPGAs on drones

Attention

Challenge: Transformers

The GPT-2 Model

Coding GPT-2 in Vanilla Python

def self_attention(attn, x):

Adds the mask so decoder cannot see values after current word def mask(x):

- new_mat = x
- for i in range(seq_len):
 for j in range(i+1, seq_len):
 new_mat[i, j] = -math.inf
 return new mat

assert(x.shape == (config['size']['emb_dim'], seq_len))

adim = config['size']['emb_dim'] // config['size']['attn_heads']

norm_x = layernorm(x, attn['ln1_w'], attn['ln1_b'])

NTFS: new memory initialized
at = attn['attn_w'].dot(norm_x) + attn['attn_b']
gq, gk, gv = np.vsplit(at, 3)

return attn['proj_w'].dot(gq) + attn['proj_b'] + x

Coding GPT-2 in C

	_ 1	2		n _
1	a_{11}	a_{12}	• • •	a_{1n}
2	a_{21}	a_{22}		$a_{2\boldsymbol{n}}$
3	a_{31}	a_{32}		a_{3n}
÷	:	E	÷	÷
m	a_{m1}	a_{m2}		a_{mn}

/// MATRIX FUNCTIONS struct Matrix { val t * data; dim_t _rows; dim_t _cols; bool rowmajor; }: void matrix_construct(struct Matrix *m, dim_t rows, dim_t cols, val_t data[]) { // m should already be declared and allocated // assert(sizeof(data) == rows*cols*sizeof(val_t)); // not actually, bc data has decayed into ptr m->_data = data; m-> rows = rows: m-> cols = cols: m->rowmaior = true: val t get(struct Matrix *m, dim t row, dim t col) { if (m->rowmajor) return m->_data[row * m->_cols + col]; else return m->_data[col * m->_rows + row]; void set(struct Matrix *m. dim t row. dim t col. val t val) { if (m->rowmajor) m->_data[row * m->_cols + col] = val; else m-> data[col * m-> rows + row] = val;

struct Matrix * self_attention(struct Matrix *m, struct Matrix * ln_w, struct Matrix * ln_b, struct /
m = layer_norm(m, ln_w, ln_b);

```
val_t adim = m->_rows / heads;
// attn weights/biases
aux_m = add_biases(matrix_dot(attn_w, m, aux_m), attn_b);
/*aux_m = pointwise_relu(aux_m);
m = add_biases(matrix_dot(proj_w, aux_m, m), proj_b);*/
```

```
for(int h = 0; h < heads; h++){
    //split into key/query/val
    for(int i = 0; i < adim; i++){
        for(int j = 0; j < m->_cols; j++){
            set(query, i, j, get(aux_m, adim*h + i, j));
        }
    for(int i = 0; i < adim; i++){
        for(int j = 0; j < m->_cols; j++){
        set(key, i, j, get(aux_m, i+m->_rows+adim*h, j));
        }
    for(int i = 0; i < adim; i++){
        for(int i = 0; i < adim; i++){
        for(int i = 0; i < adim; i++){
        set(key, i, j, get(aux_m, i+2*m->_rows+adim*h, j));
        }
    }
```

```
//matrix_print(query);
//matrix_print(key);
```

```
key = matrix_transpose(key);
```

aux_attn_m = matrix_dot(key, query, aux_attn_m);

key = matrix_transpose(key);
//printf("aux_attp_m_\p");

High Level Synthesis

struct Matrix * self_attention(struct Matrix *m, struct Matrix * ln_w, st)
m = layer_norm(m, ln_w, ln_b);

val_t adim = m->_rows / heads; // attn weights/biases aux_m = add_biases(matrix_dot(attn_w, m, aux_m), attn_b); /*aux_m = pointwise_relu(aux_m); m = add_biases(matrix_dot(proj_w, aux_m, m), proj_b);*/

for(int h = 0; h < heads; h++){</pre>

//split into key/query/val
for(int i = 0; i < adim; i++){
 for(int j = 0; j < m->_cols; j++){
 set(query, i, j, get(aux_m, adimsh + i, j));
 }
 for(int i = 0; i < adim; i++){
 for(int j = 0; j < m->_cols; j++){
 set(key, i, j, get(aux_m, i+m->_rows+adimsh, j));
 }
 for(int i = 0; j < adim; i++){
 for(int j = 0; j < m->_cols; j++){
 set(value, i, j, get(aux_m, i+2*m->_rows+adim*h, j));
 }
}

//matrix_print(query);
//matrix_print(key);

key = matrix_transpose(key);

aux_attn_m = matrix_dot(key, query, aux_attn_m);

key = matrix_transpose(key);
//nrintf("aux attn m \n")'

Challenge: Hardware

- No dynamic memory allocation
- No syscalls
- Arbitrary precision
- Hardware messiness

Re-coding GPT-2 in C

val_t get(val_t *dat, int rowmajor, dim_t rows, dim_t cols, dim_t row, dim_t col) {

void set(val t *dat, int rowmajor, dim t rows, dim t cols, dim t row, dim t col, val t val) {

if (rowmajor) return dat[row * cols + col];
else return dat[col * rows + row];

if (rowmajor) dat[row * cols + col] = val;

else

dat[col * rows + row] = val;

/// MATRIX FUNCTIONS struct Matrix { val t * data: dim t rows; dim_t _cols; bool rowmajor; }; void matrix_construct(struct Matrix *m, dim_t rows, dim_t cols, val_t data[]) { // m should already be declared and allocated // assert(sizeof(data) == rows*cols*sizeof(val_t)); // not actually, bc data has decaved into ptr m->_data = data; m->_rows = rows; m->_cols = cols; m->rowmajor = true; } val_t get(struct Matrix *m, dim_t row, dim_t col) { if (m->rowmajor) return m->_data[row * m->_cols + col]; return m->_data[col * m->_rows + row]; else 3 void set(struct Matrix *m. dim t row. dim t col. val t val) { if (m->rowmajor) m->_data[row * m->_cols + col] = val; else m-> data[col * m-> rows + row] = val; 3

x1

x1

HAT: Hardware-Aware Transformers for **Efficient Natural Language Processing**

Wang¹, Zhanghao Wu¹, Zhijian Liu¹, Han Cai¹, Ligeng Zhu¹, Chuang Gan², Song Han¹ chusetts Institute of Technology, ²MIT-IBM Watson AI Lab

ui, zhwu, zhijian, hancai, ligeng, chuangg, songhan}@mit.edu

bstract

biquitous in Natural Lan-LP) tasks, but they are difd on hardware due to the on. To enable low-latency rce-constrained hardware oose to design Hardwares (HAT) with neural archifirst construct a large deitrary encoder-decoder ateneous layers. Then we ormer that covers all cangn space, and efficiently Transformers with weight e perform an evolutionary ware latency constraint to

row /= div⊣

return ret-

layernorm(x: np.ndarray, w: np.ndarray, b: np.ndarray): x = np.transpose(x) assert(x.shape == (seq_len, config['size']['emb_dim'])) sums = x.sum(axis=1) →

```
means = sums/x.shape[1]-
stdsg = x.std(axis=1).reshape(11,1) +
stdsg = np.square(stdsg)
               . reshape(11<u>,1)</u> -
               /np.sqrt(<u>stdsq+1e-5</u>)-
```

Progress Artifacts

nspose(x) -

ert(x.**shape** == (config['size']['emb dim'], seq len))-

n = config['size']['emb dim'] // config['size']['attn heads']

norm x = layernorm(x, attn['ln1 w'], attn['ln1 b'])

at = attn['attn w'].dot(norm x) + attn['attn b']gg, gk, gv = np.vsplit(at, 3)-

for hdi in range(12):#range(config['size']['attn heads']): bq, bk, bv = gq[hdi*adim:(hdi+1)*adim], gk[hdi*adim:(hdi+1)*adi scalars = bk.T.dot(bq) / np.sqrt(adim) scalars = np.transpose(casually masked softmax(np.transpose(sca

gq[hdi*adim:(hdi+1)*adim] = bv.dot(scalars)

return attn['proj w'].dot(gg) + attn['proj b'] + x -

Impacts

the future is now

Impacts

Drones + Robots

Disaster response robots must react quickly to novel situations and survive days on one charge.

1.10	

Always-on Devices

Mobile assistants activation triggers like "Hey, Siri" are primarily limited by power consumption.

Self-driving Cars

The range and comfort of self-driving cars can be significantly improved through hardware optimization.

Datacenters

Google's 2015 TPU v1 increased inference throughput by 71X while using 25% less power, by accelerating large matrix multiplication alone.

Future Directions

Model Architectures

GPT-2 was chosen for simplicity, but application-specific architectures exist.

Application Constraints

Depending on the final application, circuits can be optimized for speed or efficiency.

Joint Evolution

Coevolution of model and hardware architectures will open new doors.

Special Thanks To

EIC Lab @ Rice X-Camp Internship Program

Thanks

Please reach out with any questions!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**

